Volume 37 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
SHAO Ying, HU Ze-yu, YAO Yan, WEI Xiang-ru, GAO Xing-min, WU Zhang-xiong. Glycine-derived nitrogen-doped ordered mesoporous carbons with a bimodal mesopore size distribution for supercapacitors and oxygen reduction. New Carbon Mater., 2022, 37(1): 259-276. doi: 10.1016/S1872-5805(22)60585-7
Citation: SHAO Ying, HU Ze-yu, YAO Yan, WEI Xiang-ru, GAO Xing-min, WU Zhang-xiong. Glycine-derived nitrogen-doped ordered mesoporous carbons with a bimodal mesopore size distribution for supercapacitors and oxygen reduction. New Carbon Mater., 2022, 37(1): 259-276. doi: 10.1016/S1872-5805(22)60585-7

Glycine-derived nitrogen-doped ordered mesoporous carbons with a bimodal mesopore size distribution for supercapacitors and oxygen reduction

doi: 10.1016/S1872-5805(22)60585-7
Funds:  We appreciate the financial support from the National Natural Science Foundation of China (21875153, 21501125), the Natural Science Foundation of Jiangsu Province (BK20150312), and the Jiangsu Shuangchuang Team Program. We also thank the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions for support. We thank Ms. GUO Ya at Soochow University for experimental assistance
More Information
  • Author Bio:

    邵 颖,硕士研究生. E-mail:1291236138@qq.com

  • Corresponding author: WU Zhang-xiong, Professor. E-mail: zhangwu@suda.edu.cn
  • Received Date: 2021-12-19
  • Rev Recd Date: 2021-12-31
  • Available Online: 2022-01-07
  • Publish Date: 2022-02-01
  • Nitrogen-doped carbon materials are promising for electrochemical energy storage and conversion. Dopant control and pore engineering play important roles in improving their performance. We have synthesized nitrogen-doped ordered mesoporous carbons (N-OMCs) with a bimodal mesopore size distribution using a solvent-free nanocasting method. The simplest amino acid (glycine, Gly) was used as the only carbon precursor and ordered mesoporous silica SBA-15 as the hard template. The confined pyrolysis of Gly in SBA-15 leads to efficient carbonization, nitrogen doping and an interesting structure. The N-OMCs have high surface areas (923–1374 m2·g−1), large pore volumes (1.32–2.21 cm3·g−1), a bimodal distribution of mesopore sizes (4.8 and 6.2–20 nm) and high nitrogen contents (3.66%–12.23%). The effects of the Gly/SBA-15 mass ratio (1–3) and carbonization temperature (700–1000 °C) on the physicochemical properties of the N-OMCs were studied. When used as electrode materials the N-OMCs have a high performance in supercapacitors. A typical sample has a large specific capacitance of 298 F·g−1, a good rate capability (70% retention at 30 A·g−1) and high stability. The different capacitances and rate capabilities of the N-OMCs are discussed by correlating them with their physicochemical properties. A balance of surface area, degree of graphitization, nitrogen doping, and an open mesoporous structure is essential to achieve the best performance. The N-OMCs also have a good performance in the electrocatalytic oxygen reduction reaction. A typical sample has a high onset of 0.92 V, a high half-wave potential of 0.83 V and a large limiting current density of 5.06 mA·cm−2.
  • loading
  • [1]
    Duan L L, Wang C Y, Zhang W, et al. Interfacial assembly and applications of functional mesoporous materials[J]. Chemical Reviews,2021,121(23):14349-14429. doi: 10.1021/acs.chemrev.1c00236
    [2]
    Benzigar M R, Talapaneni S N, Joseph S, et al. Recent advances in functionalized micro and mesoporous carbon materials: Synthesis and applications[J]. Chemical Society Reviews,2018,47(8):2680-2721. doi: 10.1039/C7CS00787F
    [3]
    Szczesniak B, Choma J, Jaroniec M, et al. Major advances in the development of ordered mesoporous materials[J]. Chemical Communications,2020,56(57):7836-7848. doi: 10.1039/D0CC02840A
    [4]
    Wang H, Shao Y, Mei S L, et al. Polymer-derived heteroatom-doped porous carbon materials[J]. Chemical Reviews,2020,120(17):9363-9419. doi: 10.1021/acs.chemrev.0c00080
    [5]
    Liang C D, Li Z J, Dai S. Mesoporous carbon materials: Synthesis and modification[J]. Angewandte Chemie-International Edition,2008,47(20):3696-3717. doi: 10.1002/anie.200702046
    [6]
    Lin T Q, Chen I W, Liu F X, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science,2015,350(6267):1508-1513. doi: 10.1126/science.aab3798
    [7]
    Wu Z X, Zhao D Y. Ordered mesoporous materials as adsorbents[J]. Chemical Communications,2011,47(12):3332-3338. doi: 10.1039/c0cc04909c
    [8]
    Zhang W, Cheng R R, Bi H H, et al. A review of porous carbons produced by template methods for supercapacitor applications[J]. New Carbon Materials,2021,36(1):69-78. doi: 10.1016/S1872-5805(21)60005-7
    [9]
    Wang J, Kong H, Zhang J Y, et al. Carbon-based electrocatalysts for sustainable energy applications[J]. Progress in Materials Science,2021,116:100717. doi: 10.1016/j.pmatsci.2020.100717
    [10]
    Feng X, Bai Y, Liu M Q, et al. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials[J]. Energy & Environmental Science,2021,14(4):2036-2089. doi: 10.1039/d1ee00166c
    [11]
    Shi Q, Zhang R Y, Lu Y Y, et al. Nitrogen-doped ordered mesoporous carbons based on cyanamide as the dopant for supercapacitor[J]. Carbon,2015,84:335-346. doi: 10.1016/j.carbon.2014.12.013
    [12]
    Liu W X, Liu N, Song H H, et al. Properties of polyaniline/ordered mesoporous carbon composites as electrodes for supercapacitors[J]. New Carbon Materials,2011,26(3):217-223. doi: 10.1016/S1872-5805(11)60077-2
    [13]
    Tian H, Liang T, Liu J, et al. Nanoengineering carbon spheres as nanoreactors for sustainable energy applications[J]. Advanced Materials,2019,31(50):1903886. doi: 10.1002/adma.201903886
    [14]
    Liu N, Yu L Q, Chen X H, et al. Electrochemical performance of rod-type ordered mesoporous carbons with different rod lengths for electric double-layer capacitors[J]. New Carbon Materials,2016,31(3):328-335. doi: 10.1016/S1872-5805(16)60016-1
    [15]
    Xie X Y, He X J, Zhang H F, et al. Interconnected sheet-like porous carbons from coal tar by a confined soft-template strategy for supercapacitors[J]. Chemical Engineering Journal,2018,350:49-56. doi: 10.1016/j.cej.2018.05.011
    [16]
    He X J, Ling P H, Qiu J S, et al. Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density[J]. Journal of Power Sources,2013,240:109-113. doi: 10.1016/j.jpowsour.2013.03.174
    [17]
    Yang D S, Bhattacharjya D, Inamdar S, et al. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. Journal of the American Chemical Society,2012,134(39):16127-16130. doi: 10.1021/ja306376s
    [18]
    Lee S H, Kim J, Chung D Y, et al. Design principle of Fe-N-C electrocatalysts: How to optimize multimodal porous structures?[J]. Journal of the American Chemical Society,2019,141(5):2035-2045. doi: 10.1021/jacs.8b11129
    [19]
    Wei J, Zhou D D, Sun Z K, et al. A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors[J]. Advanced Functional Materials,2013,23(18):2322-2328. doi: 10.1002/adfm.201202764
    [20]
    Liu D, Zeng C, Qu D Y, et al. Highly efficient synthesis of ordered nitrogen-doped mesoporous carbons with tunable properties and its application in high performance supercapacitors[J]. Journal of Power Sources,2016,321:143-154. doi: 10.1016/j.jpowsour.2016.04.129
    [21]
    Zhao M Y, Cui X X, Xu Y S, et al. An ordered mesoporous carbon nanosphere-encapsulated graphene network with optimized nitrogen doping for enhanced supercapacitor performance[J]. Nanoscale,2018,10(32):15379-15386. doi: 10.1039/C8NR04194F
    [22]
    Xin X P, Kang H Q, Feng J G, et al. A novel sol-gel strategy for N, P dual-doped mesoporous carbon with high specific capacitance and energy density for advanced supercapacitors[J]. Chemical Engineering Journal,2020,393:124710. doi: 10.1016/j.cej.2020.124710
    [23]
    Zhang D Y, Hao Y, Zheng L W, et al. Nitrogen and sulfur co-doped ordered mesoporous carbon with enhanced electrochemical capacitance performance[J]. Journal of Materials Chemistry A,2013,1(26):7584-7591. doi: 10.1039/c3ta11208j
    [24]
    Wei F, He X J, Ma L B, et al. 3D N, O-codoped egg-box-like carbons with tuned channels for high areal capacitance supercapacitors[J]. Nano-Micro Letters,2020,12:82. doi: 10.1007/s40820-020-00416-2
    [25]
    Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J]. Journal of Physical Chemistry B,1999,103(37):7743-7746. doi: 10.1021/jp991673a
    [26]
    Ryoo R, Joo S H, M. Kruk M, et al. Ordered mesoporous carbons[J]. Advanced Materials,2001,13(9):677-681. doi: 10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C
    [27]
    Liang C D, Hong K L, Guiochon G A, et al. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers[J]. Angewandte Chemie-International Edition,2004,43(43):5785-5789. doi: 10.1002/anie.200461051
    [28]
    Meng Y, Gu D, Zhang F Q, et al. Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation[J]. Angewandte Chemie-International Edition,2005,44(43):7053-7059. doi: 10.1002/anie.200501561
    [29]
    Lu A H, Schuth F. Nanocasting: A versatile strategy for creating nanostructured porous materials[J]. Advanced Materials,2006,18(14):1793-1805. doi: 10.1002/adma.200600148
    [30]
    Ma T Y, Liu L, Yuan Z Y. Direct synthesis of ordered mesoporous carbons[J]. Chemical Society Reviews,2013,42(9):3977-4003. doi: 10.1039/C2CS35301F
    [31]
    Diez N, Sevilla M, Fuertes A B. Synthesis strategies of templated porous carbons beyond the silica nanocasting technique[J]. Carbon,2021,178:451-476. doi: 10.1016/j.carbon.2021.03.029
    [32]
    Yan B, Zheng J J, Wang F, et al. Review on porous carbon materials engineered by ZnO templates: Design, synthesis and capacitance performance[J]. Materials & Design,2021,201:109518. doi: 10.1016/j.matdes.2021.109518
    [33]
    He X J, Li R C, Qiu J S, et al. Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template[J]. Carbon,2012,50:4911-4921. doi: 10.1016/j.carbon.2012.06.020
    [34]
    Li W, Zhang F, Dou Y Q, et al. A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes[J]. Advanced Energy Materials,2011,1(3):382-386. doi: 10.1002/aenm.201000096
    [35]
    Zhang Z, Wang B, Zhu C, et al. Facile one-pot synthesis of mesoporous carbon and N-doped carbon for CO2 capture by a novel melting-assisted solvent-free method[J]. Journal of Materials Chemistry A,2015,3(47):23990-23999. doi: 10.1039/C5TA06465A
    [36]
    Zhang P F, Wang L, Yang S Z, et al. Solid-state synthesis of ordered mesoporous carbon catalysts via a mechanochemical assembly through coordination cross-linking[J]. Nature Communications,2017,8:15020. doi: 10.1038/ncomms15020
    [37]
    Wang Q W, Mu Y J, Zhang W L, et al. A facile solvent-free route to synthesize ordered mesoporous carbons[J]. RSC Advances,2014,4(61):32113-32116. doi: 10.1039/C4RA02743D
    [38]
    Gao X M, Chen Z, Yao Y, et al. Direct heating amino acids with silica: A universal solvent-free assembly approach to highly nitrogen-doped mesoporous carbon materials[J]. Advanced Functional Materials,2016,26(36):6649-6661. doi: 10.1002/adfm.201601640
    [39]
    Lin Y Q, Hu Z Y, Shao Y, et al. Single-precursor design and solvent-free nanocasting synthesis of N/S/O-doped ordered mesoporous carbons with trimodal pores for excellent oxygen reduction[J]. Carbon,2021,183:390-403. doi: 10.1016/j.carbon.2021.07.030
    [40]
    Chen Z, Gao X M, Wei X R, et al. Directly anchoring Fe3C nanoclusters and FeNx sites in ordered mesoporous nitrogen-doped graphitic carbons to boost electrocatalytic oxygen reduction[J]. Carbon,2017,121:143-153. doi: 10.1016/j.carbon.2017.05.078
    [41]
    Wei X R, Zhang Z J, Zhou M Y, et al. Solid-state nanocasting synthesis of ordered mesoporous CoNx-carbon catalysts for highly efficient hydrogenation of nitro compounds[J]. Nanoscale,2018,10(35):16839-16847. doi: 10.1039/C8NR04775H
    [42]
    Choi C H, Park S H, Woo S I. Heteroatom doped carbons prepared by the pyrolysis of bio-derived amino acids as highly active catalysts for oxygen electro-reduction reactions[J]. Green Chemistry,2011,13(2):406-412. doi: 10.1039/C0GC00384K
    [43]
    Yan J, Meng H, Xie F Y, et al. Metal free nitrogen doped hollow mesoporous graphene-analogous spheres as effective electrocatalyst for oxygen reduction reaction[J]. Journal of Power Sources,2014,245:772-778. doi: 10.1016/j.jpowsour.2013.07.003
    [44]
    Choi I A,. Kwak D H, Han S B, et al. Nitrogen-doped bi-modal porous carbon nanostructure derived from glycine for supercapacitors[J]. Journal of Industrial and Engineering Chemistry,2018,63:112-116. doi: 10.1016/j.jiec.2018.02.006
    [45]
    Sanetuntikul J, Hyun S, Ganesan P, et al. Cobalt and nitrogen co- doped hierarchically porous carbon nanostructure: A bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. Journal of Materials Chemistry A,2018,6(47):24078-24085. doi: 10.1039/C8TA08476A
    [46]
    Cai J J, Zhou Q Y, Gong X F, et al. Metal-free amino acid glycine-derived nitrogen-doped carbon aerogel with superhigh surface area for highly efficient Zn-Air batteries[J]. Carbon,2020,167:75-84. doi: 10.1016/j.carbon.2020.06.002
    [47]
    Zhu C Y, Takata M, Aoki Y, et al. Nitrogen-doped porous carbon as-mediated by a facile solution combustion synthesis for supercapacitor and oxygen reduction electrocatalyst[J]. Chemical Engineering Journal,2018,350:278-289. doi: 10.1016/j.cej.2018.06.001
    [48]
    Kim J K, Kang Y C. Encapsulation of Se into hierarchically porous carbon microspheres with optimized pore structure for advanced Na–Se and K–Se batteries[J]. ACS Nano,2020,14(10):13203-13216. doi: 10.1021/acsnano.0c04870
    [49]
    Zhu J H, Chen Z, Jia L, et al. Solvent-free nanocasting toward universal synthesis of ordered mesoporous transition metal sulfide@N-doped carbon composites for electrochemical applications[J]. Nano Research,2019,12(9):2250-2258. doi: 10.1007/s12274-019-2299-8
    [50]
    Zhang Z J, Wei X R, Yao Y, et al. Conformal coating of Co/N-doped carbon layers into mesoporous silica for highly efficient catalytic dehydrogenation-hydrogenation tandem reactions[J]. Small,2017,13(42):1702243. doi: 10.1002/smll.201702243
    [51]
    Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science,1998,279(5350):548-552. doi: 10.1126/science.279.5350.548
    [52]
    Wan Y, Zhao D Y. On the controllable soft-templating approach to mesoporous silicates[J]. Chemical Reviews,2007,107(7):2821-2860. doi: 10.1021/cr068020s
    [53]
    Fox S, Dalai P, Lambert J F, et al. Hypercondensation of an amino acid: Synthesis and characterization of a black glycine polymer[J]. Chemistry-A European Journal,2015,21(24):8897-8904. doi: 10.1002/chem.201500820
    [54]
    Yao Y, Chen Z, Zhang A, et al. Surface-coating synthesis of nitrogen-doped inverse opal carbon materials with ultrathin micro/mesoporous graphene-like walls for oxygen reduction and supercapacitors[J]. Journal of Materials Chemistry A,2017,5(48):25237-25248. doi: 10.1039/C7TA08354H
    [55]
    Rimola A, Sodupe M, Ugliengo P. Affinity scale for the interaction of amino acids with silica surfaces[J]. Journal Of Physical Chemistry C,2009,113(14):5741-5750. doi: 10.1021/jp811193f
    [56]
    Ferrari A C, Robertson J. Interpretation of raman spectra of disordered and amorphous carbon[J]. Physical Review B,2000,61(20):14095-14107. doi: 10.1103/PhysRevB.61.14095
    [57]
    Zhou M Y, Lin Y Q, Xia H Y, et al. A molecular foaming and activation strategy to porous N-doped carbon foams for supercapacitors and CO2 capture[J]. Nano-Micro Letters,2020,12(1):58. doi: 10.1007/s40820-020-0389-3
    [58]
    Tian H, Lin Z, Xu F, et al. Quantitative control of pore size of mesoporous carbon nanospheres through the self-assembly of diblock copolymer micelles in solution[J]. Small,2016,12(23):3155-3163. doi: 10.1002/smll.201600364
    [59]
    Chen H, Li Q, Teng N, et al. Simultaneous micropore development and nitrogen doping of ordered mesoporous carbons for enhanced supercapacitor and Li-S cathode performance[J]. Electrochimica Acta,2016,214:231-240. doi: 10.1016/j.electacta.2016.08.045
    [60]
    Fan L, Sun P, Yang L, et al. Facile and scalable synthesis of nitrogen-doped ordered mesoporous carbon for high performance supercapacitors[J]. Korean Journal of Chemical Engineering,2020,37(1):166-175. doi: 10.1007/s11814-019-0414-8
    [61]
    Fei H F, Li W H, Bhardwaj A, et al. Ordered nanoporous carbons with broadly tunable pore size using bottlebrush block copolymer templates[J]. Journal of the American Chemical Society,2019,141(42):17006-17014. doi: 10.1021/jacs.9b09572
    [62]
    Xie M, Meng H, Chen J, et al. High-volumetric supercapacitor performance of ordered mesoporous carbon electrodes enabled by the faradaic-active nitrogen doping and decrease of microporosity[J]. ACS Applied Energy Materials,2021,4(2):1840-1850. doi: 10.1021/acsaem.0c02948
    [63]
    Wang Q, Yan J, Fan Z. Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities[J]. Energy & Environmental Science,2016,9(3):729-762. doi: 10.1039/c5ee03109e
    [64]
    Li B, Dai F, Xiao Q F, et al. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor[J]. Energy & Environmental Science,2016,9(1):102-106. doi: 10.1039/c5ee03149d
    [65]
    Bi Z H, Kong Q Q, Cao Y F, et al. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: A review[J]. Journal of Materials Chemistry A,2019,7(27):16028-16045. doi: 10.1039/C9TA04436A
    [66]
    Ma C, Song Y, Shi J L, et al. Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes[J]. Carbon,2013,51:290-300. doi: 10.1016/j.carbon.2012.08.056
    [67]
    Liu X, Zhou Y, Wang C L, et al. Solvent-free self-assembly synthesis of N-doped ordered mesoporous carbons as effective and bifunctional materials for CO2 capture and oxygen reduction reaction[J]. Chemical Engineering Journal,2022,427:130878. doi: 10.1016/j.cej.2021.130878
    [68]
    Wan K, Long G F, Liu M Y, et al. Nitrogen-doped ordered mesoporous carbon: synthesis and active sites for electrocatalysis of oxygen reduction reaction[J]. Applied Catalysis B:Environmental,2015,165:566-571. doi: 10.1016/j.apcatb.2014.10.054
    [69]
    Zhong H, Zhang S, Jiang J, et al. Improved electrocatalytic performance of tailored metal-free nitrogen-doped ordered mesoporous carbons for the oxygen reduction reaction[J]. ChemElectroChem,2018,5(14):1899-1904. doi: 10.1002/celc.201700910
    [70]
    Deng C, Pan L, Ji F, et al. Hybrid dual-template induced nitrogen-doped hierarchically porous carbon as highly efficient oxygen reduction electrocatalyst[J]. International Journal of Hydrogen Energy,2021,46(73):36167-36175. doi: 10.1016/j.ijhydene.2021.08.156
    [71]
    Xiao C, Chen X, Fan Z, et al. Surface-nitrogen-rich ordered mesoporous carbon as an efficient metal-free electrocatalyst for oxygen reduction reaction[J]. Nanotechnology,2016,27(44):445402. doi: 10.1088/0957-4484/27/44/445402
    [72]
    Zhang L, Gu T, Lu K, et al. Engineering synergistic edge-N dipole in metal-free carbon nanoflakes toward intensified oxygen reduction electrocatalysis[J]. Advanced Functional Materials,2021,31(42):2103187. doi: 10.1002/adfm.202103187
  • 20210310-支撑材料.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article Views(777) PDF Downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return